SYNTHESIS OF DIFFICULT PEPTIDE SEQUENCES: A COMPARISON OF FMQC-AND BQC-TECHNIQUE

Michael Beyermann * and Michael Bienert

Institute of Molecular Pharmacology, Alfred-Kowalke-Str. 4 , D-(O)- 1136 Berlin, Germany

Absfmcr: In comparison with Fmoc-technique the BQC-technique with *in situ* neutralization proved advantageous for the synthesis of difficult peptides forming β -sheet structures.

In view of the most serious problems of the stepwise solid phase peptide synthesis, namely chemical sidereactions and incomplete aminoacylations, BQC/benxyl and Fmoc/t-butyl strategy have been compared mainly with regard to chemical side-reactions¹. It was recently described that a protonated peptide-polystyrene resin swells much more in polar solvents than the deprotonated one² and moreover, that an application of a protonated peptide-resin instead of the deprotonated one to the coupling 'step with an *in situ* neutralization during the coupling resulted for some examples in better coupling yields³. Both findings indicate that the application of a protonated peptide-resin with better swelling properties in polar solvents might be advantageous especially for syntheses of so-called "difficult peptides", such as the homooligo-peptides $(Val)_n$ and $(Ala)_n$ ⁴, which tend strongly to ß-sheet formation followed by shrinking of the peptide-resin and slow acylation rates.

To proof the idea we investigated the course of synthesis of $(Val)_n$ on 4-methylbenzhydrylamine-polystyrene (1% divinylbenxene) with a high capacity (I - 1.2 mmol/g) to force the aggregation of growing peptide chains. The MBHA-linker allows the application of BQC- as well as of Fmoc-strategy. Starting with 100 mg of the neutralized resin, couplings were carried out with Fmoc-Val/TBTU⁵ (1.0 M in DMF, 0.4 ml; 2 equiv. DIEA⁵, for 20 mm). After deblocking with piperidine/DMF (l/4 , 10 min) the coupling yield was determined by estimation of liberated dibenzofulvene-piperidine adduct (u.v. 301 nm). For the synthesis a drastic decrease of the coupling yield was observed at the fifth step (Fig. lA,"Fmoc"). Under the same conditions but with ultrasonification⁶ during the couplings we observed the same result (Fig. 1A). To imitate the conditions of the BQC-strategy with *in situ* neutralization, but using Fmoc-Val for couplings to estimate coupling yields, the deprotected peptide-resin was washed with TFA⁵ (15 sec) followed by DMF (3x) before coupling steps. By it, we observed a much higher resin swelling and high coupling yields (Fig. 1A, "TFA"). In the traditional BOCstrategy the TFA-treatment is followed by an separated neutralization step (10% DIEA/DMF, 2x 30 sec), but this resulted here in poor couplings (Fig. 1A). Couplings of Fmoc-Val in NMP/DMSO $(4/1)^7$ gave some better results than in DMF, but again a drastic decrease at the fifth step was found (Fig. IB). The next coupling at 50 \degree C \degree did not show any improvement, but the seventh coupling after TFA-wash resulted in a high coupling vield, again (Fig. 1B).

For the synthesis of $(Ala)_n$ we used an analogous protocol, but a lower resin capacity (0.25 mmol/g), double

couplings ($2x10$ min) and 0.5 M Fmoc-Ala/TBTU/ 2 equ. DIEA in DCM/DMF ($1/1$). The effect of the TFAwash on coupling yields is also significant (Fig. 2A), hut between valine and alanine there is a substantial difference in view of the deblocking. For $(Val)_n$ the deblocking is always fast, but in the case of $(Ala)_n$ starting from $n=6$ the deblocking becomes very slow. It needs partially more than 100 min $\frac{9}{10}$. Finally, the ion-spray MS spectra (IO-MS)¹⁰ of a crude (Ala)₁₀-NH₂ (MH⁺: 728.41) synthesized using the described protocol with TFAwash demonstrates the success of the method (Fig. 2B). Unfortunately, in contrast to others⁹ by now we did not find proper BP-HPLC conditions for an analytical characterization.

Figure 1: Influence of solvents, ultrasonification (35 kHz), elevated temperature and TFA-wash with in situ or separated neutralization on the synthesis of $(Val)_n$ on MBHA-resin

Figure 2: A) Course of the synthesis of $(AIa)_n$ on MBHA-polystyrene with and without TFA-wash; deblocking with piperidine/ DMSO (1/1) until constant u.v. at 301 nm; B) IS-MS of a crude $(Ala)_{10}-NH_2$

For a real comparison of BOC- and Fmoc-strategy to prepare difftcult peptides we synthesized the antimicrobial peptide Magainin-II-NH2 which has been described to form inaccessible structures for the acylation during its stepwise synthesis on solid support¹¹ and which was hard to be synthesized on polystyrene resins using Fmocstrategy¹². For the syntheses at a batchwise working synthesizer (SYNOSTAT P, Biotronic/Eppendorf, Germany) we used a protocol similar to the procedure developed in the group of Kent³ on high-loaded MBHApolystyrene ($1-1.2$ mmol/g): DMF; $2x2$ min TFA; $4x$ DMF; 0.3 M BOC-aa/TBTU/2 DIEA/DMF for 13 min; 2x DMF (Fig. 3A). Using the same protocol we made a second synthesis with a separated neutralization step (5% DIEA/DMF) after TFA-deblocking (Fig. 3B) and a third synthesis but with Fmoc/t-butyl-strategy (Fig. 3C) and instead of TFA of course piperidine/DMF $(1/1)$ for deblockings $(2x 5 min)$. In the case of Fmoc-strategy the peptide-resin was treated with TFA for one hour before the final HF-cleavage (1 h , **0 o C, 5%** anisole; the same for all three products). The comparison of crude products demonstrates clearly that the BOC-strategy with TFA-deblocking and *in situ* neutralization gave the best result under these conditions.

Figure 3: BP-HPLC profiles of crude Magainin-H-amide synthesized with BOC-strategy with *in situ* (A) or separated neutralization (B), and with Fmoc-strategy

An explanation for the effect of TFA might be given by its property to destroy amide hydrogen bondings. After DMF-washes some TFA remains in the peptide-resin and keeps it in a swollen state for couplings. A separated neutralization removes traces of TFA and causes the shrinkage. For the Fmoc-strategy such conditions for breaking strong hydrogen bondings are missing. Futher **studies** will investigate whether TFA might be replaced by other, **non-carbonic acids.**

Acknowledgement: We thank Mrs. Annerose Klose for her skillful technical assistance.

References and notes

- 1. A.J. Smith, J.D. Young, S.A. Carr, D.R. Marshak, L.C. Williams, K.R. Williams, in "Techniques of Protein Chemistry" (R. Angeletti, ed.), Academic Press, 1992, in press.
- 2. C.R. Nakaie, R. Marchetto, S. Schreier, A.C.M. Paiva, in Peptides (J.E. Rivier, G.R.Marshall, eds.), ESCOM, Leiden, 1990, p 1022.
- 3. M. Schnolzer, P.F. Alewood, S.B.H. Kent, in Abstracts of the 12. Amer. Peptide Symp., Cambridge/MA, June 16-21,1991,P 387.
- 4. V.N.A. Pilai, M. Mutter, Accounts Chem. Res. 14, 122 (1981).
- 5. abbreviations: TBTU benzotriazol-1-yl-1.1.3.3.-tetramethyluronium tetrafluoroborate DIEA diisopropylethylamine, TFA trifluoroacetic acid.
- 6. V. Krchnak, J. Vagner, in "Innovations and Perspectives in Solid Phase Synthesis" (R. Epton, ed.) Wolverhampton, U.K., 1992, in press.
- 7. G.B. Fields, C.G. Fields, in Peptides (E. Giralt,D. Andreu, eds.) ESCOM, Leiden, 1991, p 120.
- 8. D.H. Lloyd, G.M. Petrie, R.L. Noble, J.P. Tam, in Peptides (J.E. Rivier, G.R. Marshall, eds.) ESCOM, Leiden, 1990, p 909.
- 9. B.D. Larsen, C. Larsen, A. Holm, in Peptides (E. Giralt, D. Andreu, eds.) ESCOM, Leiden,1991, p 183.
- 10. IS-MS made by J. Metzger, G. Jung, University of Tübingen, Germany.
- 11. C. Baris, A. Brass, B. Robson, G. Tomalin, in "Innovation and Perspectives in Solid Phase Synthesis" (R. Epton, ed.), Wolverhampton, U.K., 1990, p 441.
- 12. M. Beyermann, H. Wenschuh, P. Henklein, M. Bienert, in "Innovation and Perspectives in Solid Phase Synthesis" (R. Epton, ed.) Wolverhampton,U.K.,1992, in press.
- 13. HPLC-conditions: LiChrosorb RP-8, $10 \mu m$, $250x4 \text{ mm}$, 1 ml/m min, u.v. 220 nm , A: 0.07 M KH₂PO₄, pH 2.5, B: 50% of A/ 50% acetonitrile, 20-80% B/40 min.

(Received in Germany 3 March 1992)